
The Algorithmic Foundations of Adaptive Data Analysis September, 2017

Lecture 6
Lecturer: Aaron Roth Scribe: Aaron Roth

Description Length Bounds III

In this lecture, we will continue to develop transcript-compressible statistical estimators. We will
focus on more general purpose estimators for statistical queries. First, we recall the AboveThreshold
algorithm, which will continue to be a useful building block for us.

AboveThreshold(T, q
1

, q
2

, . . .):

AllDone FALSE
while not AllDone do
Accept the next query qi
Compute ai qi(S)
if ai < T then

Return ?
else

Return >
AllDone TRUE.

end if
end while

Theorem 1 For any threshold T , AboveThreshold(T) is transcript compressible to b(n, k) bits where
b(n, k) = log(k + 1).

One thing we can use the primitive AboveThreshold for is to check whether a guess we have for
the answer to a query qi is approximately correct or not. Given a guess gi for the answer to a query qi,
denote the compound query that asks “Is |qi(D) � gi| ⌘?” as (qi, gi, ⌘). Given a fixed cuto↵ ⌘ and a
sequence of such queries (q

1

, g
1

, ⌘), . . . , (qk, gk, ⌘) we can initialize an instance of AboveThreshold with
the threshold ⌘, and start asking the sequence of queries q̂i = |qi(D)� gi|. An answer of ? corresponds
to “yes”, and an answer of > corresponds to “no”. We can keep asking these questions until we get
our first “no”. By itself, this does not give us the answers to all of our queries: but note, that for any
query for which our guess was approximately correct (q̂i(S) ⌘), we know that the guess gi itself is
sample-accurate to accuracy ⌘. What about the final query q̂i, to which the answer was “yes”? We do
not know the answer to this query – but we can obtain the answer by running the truncated estimator
OT

b (qi). If we set b = log(1/⌘), this will also be sample accurate to accuracy ⌘. Putting this together,
we get the following sample estimator.

OneWrongGuess(⌘, (q
1

, g
1

), (q
2

, g
2

), . . .)

Start an instance of AboveThreshold with threshold ⌘.
while AboveThreshold has not halted do
Accept the next query (qi, gi).
Feed AboveThreshold the query q̂i(S) = |qi(S)� gi|.
if AboveThreshold returns ? then
Return the answer ai = gi

end if
end while
Return the answer ai = OT

b (qi) for b = log(1/⌘).

6-1

Theorem 2 For any threshold 0 < ⌘ 1, OneWrongGuess is (⌘, 0)-sample accurate and transcript

compressible to b(n, k) bits where b(n, k) = log(k + 1) + log(1/⌘).

Proof Let f be a post-processing function which replaces query (qi, gi) with query q̂i(S) = |qi(S)�gi|,
and answer ai = ? with answer ai = gi. Then OneWrongGuess can be viewed as a composition of
f(AboveThreshold) and OT

b . We have proven that AboveThreshold is log(k + 1)-transcript com-
pressible, and by the postprocessing theorem, so is f(AboveThreshold). Similarly, when b = log(1/⌘),
OT

b is transcript compressible to log(1/⌘) bits. By the composition theorem then, OneWrongGuess is
transcript compressible to b(n, k) = log(k + 1) + log(1/⌘) many bits.

Sample accuracy follows trivially. We already know that OT
b is (1/2b, 0)-accurate, which is (⌘, 0)

accurate for our choice of b. Similarly, for every other answered query, we provide answer gi, but by
definition of AboveThreshold, we know that |gi � qi(S)| ⌘.

This procedure lets us answer many queries while being highly compressible so long as our guesses
are always accurate, but it stops answering queries as soon as we have one incorrect guess. What if we
want to continue until we have m incorrect guesses? We can just compose OneWrongGuess with itself
m times. Consider the following procedure:

GuessAndCheck(⌘,m, (q
1

, g
1

), (q
2

, g
2

), . . .)

TimesWrong 0
while TimesWrong < m do
Start an instance of AboveThreshold with threshold ⌘.
while AboveThreshold has not halted do

Accept the next query (qi, gi).
Feed AboveThreshold the query q̂i(S) = |qi(S)� gi|.
if AboveThreshold returns ? then

Return the answer ai = gi
end if

end while
Return the answer ai = OT

b (qi) for b = log(1/⌘).
TimesWrong TimesWrong + 1

end while

Theorem 3 For any ⌘,m, GuessAndCheck is (⌘, 0) sample-accurate and transcript compressible to

b(n, k) bits where b(n, k) = m(log(k + 1) + log(1/⌘)).

Proof GuessAndCheck is just a composition of OneWrongGuess with itself, m times. The result
follows from our composition theorem.

Theorem 4 Fix a value of m and a value of � > 0. Setting ⌘ =
p

m
n , GuessAndCheck(⌘,m) is (✏, �)-

accurate for any sequence of compound queries (qi, gi) until it halts, where qi can be any 1/n-sensitive
query, for:

✏ = O

 r
m (log(k) + log(n/m)) + log(k/�)

n

!

Proof We again use the transfer theorem for transcript compressibility. We have shown thatGuessAndCheck
is b(n, k) = m(log(k + 1) + log(1/⌘)) transcript compressible, and (⌘, 0)-sample accurate. Therefore, we
know that it is (✏, �)-accurate for:

✏ = ⌘ +

r
(m(log(k + 1) + log(1/⌘)) + 1) ln(2) + ln(k/�)

2n

Plugging in our choice of ⌘ yields the bound. As always, small improvements in asymptotics and
constants can be obtained by choosing ⌘ to optimize the above expression exactly.

6-2

So we can answer lots of queries accurately (with error scaling only logarithmically with k, as in the
non-adaptive case) so long as we can correctly guess the answer up to our error tolerance for all but some
number m of our queries. But how can we in general come up with good guesses for query answers? We
will see several ways.

Lemma 5 For any ✏ > 0, any k statistical queries �
1

, . . . ,�k and for any dataset S 2 Xn
, there is an

S0 2 Xn0
such that:

1. maxi
��ES [�i]� E0

S [�i]
�� ✏

2. n0 = ln(4k)
2✏2

Proof Consider generating S0 by subsamplingm points from S with replacement. Under this sampling
distribution, E[�i] = ES [�i] for each i. So we can apply a Cherno↵ bound to deduce that with probability
1/2:

max
i

|ES [�i]� ES0 [�i]|
r

ln(4k)

2m
 ✏

by our choice of m. Since this occurs with probability 1/2 over our selection of S0, in particular, there
must exist some S0 of size m satisfying this bound.

With this fact in hand, we can give a simple but computationally ine�cient statistical estimator that
can answer arbitrary sequences of statistical queries with error bounds scaling only logarithmically with
k:

MedianOracle(q
1

, . . . , qk)

Initialize an instance of GuessAndCheck(⌘,m) with m =
q

n log |X | ln(4k)
2

and ⌘ =
p

m
n .

Initialize a version space S
0

= Xn0
where n0 = ln(4k)

2⌘2

for i = 1 to k do
Given query qi, construct a guess gi = median ({qi(S0) : S0 2 Si�1

})
Feed the query (qi, gi) to GuessAndCheck and receive answer ai.
if âi = gi then
Si Si�1

else
Si Si�1

\ {S0 2 Si�1

: |qi(S0)� ai| > ⌘}
end if
Return answer ai.

end for

Theorem 6 For any � > 0, MedianOracle is (✏, �)-accurate for any sequence of k statistical queries

where:

✏ = O

✓
log(|X | log(k))1/4plog k + log n

n1/4

◆

Proof The median oracle is simply an instantiation of (a postprocessing of) GuessAndCheck. Thus,
with our choice of ⌘, the accuracy bound for the queries asked before the algorithm halts follows from
the accuracy guarantee of GuessAndCheck, together with our choice of m. It remains to show that
MedianOracle will answer all k queries asked, and never halt. By the definition of GuessAndCheck,
this is equivalent to showing that |qi(S) � gi| ⌘ for all but m rounds i. Call such rounds “Mistaken

Guesses”. Note that we have chosen m and ⌘ such that: m = ln(4k) log |X |
2⌘2 = n0 log |X |, and recall that

GuessAndCheck is ⌘-sample accurate.
We prove this by tracking |Si|. Note that by construction, |S

0

| = |X |n0
. Next note that at every

round i such that a mistaken guess is made, |Si| |Si�1

|/2. This is because on those rounds (by
definition of GuessAndCheck, |gi � qi(S)| > ⌘, and all of the sets S0 such that |qi(S0) � ai| > ⌘ are

6-3

removed from Si. But by definition, gi = median ({qi(S0) : S0 2 Si�1

}), and so at least half of the sets
S0 in Si are removed by this update. Finally, by Lemma 5, we know that for every set of k statistical
queries �

1

, . . . ,�k, there is some S0 2 S
0

such that |qi(S0)� qi(S)| ⌘. This S0 is never removed, so we
know that S0 2 Si for every i, and hence |Si| � 1 for every i. Thus, the number of mistaken guesses can
be at most log |S

0

| = n0 log |X | = m, which completes the proof.

What are we to make of these bounds? On the one hand, we obtain the polylogarithmic dependence
on k in our error bounds that is close to the best achievable even in the non-adaptive setting for
answering arbitrary statistical queries! This is an exponential improvement on what we can achieve
with the simpler general-purpose statistical estimators that we have seen before. On the other hand,
the bound has a number of drawbacks. Fist, the dependence on n is suboptimal — we get error tending
to zero at a rate of 1/n1/4 instead of 1/

p
n. We will see how to improve this dependence later in the

course. Next, the error scales with log |X |, which should be taken as a measure of the dimension of
the data domain. This was something that was not necessary in the non-adaptive case. Finally, the
estimator is computationally intractable — it needs to maintain an enormous version space of sets S0.
We will see that these properties are unavoidable for any statistical estimator in the adaptive setting that
obtains error rates scaling only logarithmically in k (compared to the non-adaptive setting, where this
e�cient scaling with k is achievable via a trivially tractable mechanism: simply computing the empirical
average.)

We will end our discussion of description length bounds with a computationally e�cient heuristic,
leveraging the GuessAndCheck sub-routine. The heuristic can be viewed as an extension of standard
test/train methodology, in which the data set is divided into a training and holdout set. The training
set can be used in arbitrary ways — in this case, it is used to produce the guesses for the query answers.
The holdout set in this case is only accessed via transcript compressible mechanisms,

ReusableHoldout(m, q
1

, . . . , qk)

Randomly split the dataset S into two equal parts: a training set ST and a holdout set SH , each of
size n/2.

Initialize an instance of GuessAndCheck(⌘,m) on SH with ⌘ =
q

2m
n .

for i = 1 to k do
Given query qi, construct a guess gi = qi(ST)
Feed the query (qi, gi) to GuessAndCheck and receive answer ai.
Return answer ai.

end for

Since the re-usable holdout directly calls GuessAndCheck on half of the dataset, it directly inherits
its accuracy bounds:

Theorem 7 Fix a value of m and a value of � > 0. ReusableHoldout(m) is (✏, �)-accurate for any

sequence of 1/n sensitive queries qi until it halts, for:

✏ = O

 r
m (log(k) + log(n/m)) + log(k/�)

n

!

Unlike the median mechanism, we do not have a guarantee about when the mechanism will halt. Infor-

mally, it will halt after the analyst asks m queries that overfit the training set by more than
q

2m
n . But

note a couple of things:

1. If the analyst is actually non-adaptive, then (if m � log k) a Cherno↵ bound will tell us that the
mechanism will be able to answer exponentially many queries before it halts, since overfitting by
more than ⌘ is extremely unlikely on any given query.

2. The reusable holdout with m � log d also defeats the linear classification “attack” we saw on the
empirical average mechanism: that mechanism only asks a single “overfitting” query – the last
one.

6-4

3. More generally, the reusable holdout will work well whenever the analyst does not overfit very
frequently. So the “less adversarial” the analyst, the better the guarantees.

Bibliographic Information The “AboveThreshold” algorithm is adapted from a similar algorithm
from the di↵erential privacy literature [DR14] that we will see again in the next section of our course.
Similarly, the median mechanism [RR10] was initially designed as a di↵erentially private algorithm.
The description-length-bounded version presented here appeared in the appendix of [DFH+15a]. The
reusable holdout was also first presented as a di↵erentially private algorithm, in [DFH+15b]. Later in
the class we will re-visit these mechanisms, and derive improved bounds using di↵erential privacy.

References

[DFH+15a] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Aaron
Roth. Generalization in adaptive data analysis and holdout reuse. In Corinna Cortes,
Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 28: Annual Conference on Neural Information

Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages 2350–
2358, 2015.

[DFH+15b] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and
Aaron Roth. The reusable holdout: Preserving validity in adaptive data analysis. Sci-

ence, 349(6248):636–638, 2015.

[DR14] Cynthia Dwork and Aaron Roth. The algorithmic foundations of di↵erential privacy. Foun-
dations and Trends

R� in Theoretical Computer Science, 9(3–4):211–407, 2014.

[RR10] Aaron Roth and Tim Roughgarden. Interactive privacy via the median mechanism. In
Proceedings of the forty-second ACM symposium on Theory of computing, pages 765–774.
ACM, 2010.

6-5

