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1 A Model for Adaptive Data Analysis

This course will focus on settings where data analysis is interactive, and questions asked by the analysis
be depend adaptively on answers to previous questions. A stylized but important setting for thinking
about adaptivity is that of statistical queries. Recall that a statistical query asks for the expectation of
a bounded function in the population. Such queries capture a wide range of basic descriptive statistics
(the prevalence of a disease in a population, for example, or the average age). Many inference algorithms
can also be expressed in terms of a sequence of statistical queries [Kea98].

Suppose each data point lies in a universe X , so that a data set lies in Xn and the underlying
population is a distribution on X . A statistical query is specified by a function φ : X → [0, 1]. The
population value (or population mean or true value) of a linear query is its expected value when evaluated
on a fresh sample from D, denoted (with some abuse of notation)

φ(D)
def
= EX∼D[φ(X)] .

Consider now an analyst A who whishes to answer a sequence such queries φ1, φ2, ..... For each query
φj , the analyst wishes to learn the population mean φj(D) as accurately as possible.

The analyst A typically does not have direct access to D, however, so instead makes use of a data
set S = (X1, ..., Xn) of n points drawn i.i.d. from D. The most straightforward way to estimate φj(D)
is via the empirical mean on S:

φ(S)
def
=

1

n

∑
xi∈s

φ(Xi) .

Next lecture, we will see settigns where using the empirical mean to estimate the population mean is
not the best strategy! To allow ourselves more flexibility, we will imagine that the analyst interacts with
the data via a “mechanism” M . Formally, given the query answering mechanism M , a data analyst A,
and a distribution D on the data universe X , we consider a random interaction defined by selecting a
sample S of n i.i.d. draws from D, and then having A interact with M(S) for k rounds, where in each
round j, (i) A selects φj (based on a1, . . . , ai−1), (ii) M answers aj .

This interaction is illustrated in Figure 1.
In general, neither the mechanism nor the analyst knows the exact distribution D (otherwise, why

collect data?), so the mechanism cannot always answer with the population mean φ(D). The näıve
mechanism that always returns the empirical mean (that is, for which aj = φj(S)) is called the empirical
mechanism. Here are a few other examples of mechanisms we might use (the list is by no means
exhaustive!):

1. Rounding: report φj(S) rounded to the nearest multiple of 0.1 (0r 0.01 or...);
2. Noise addition: report φj(S) + Zj where Zj ∼ N(0, σ2) (for fixed σ > 0);
3. Subsampling: for each φj , take a subsample Sj ⊆ S and report φj(S);
4. Given a Bayesian prior on the distribution D, construct a posterior distribution on D given S, and

answer each query φj using the expectation over the posterior.
How do we measure the mechanism’s performance? For now, we will the meachism’s worst absolute

error, as measured with respect to the population: The (population) error of M is the random variable

errS(M,A) = max
j
|φj(D)− aj | .

which depends on S as well as the coins of M and A.
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Definition 1 A query answering mechanism M is (α, β)-accurate on i.i.d. data for k queries if for
every data analyst A and distribution P, we have

Pr (errS(M,A) ≤ α) ≥ 1− β .

The probability is over the choice of the dataset S ∼i.i.d. D and the randomness of the mechanism and
the analyst. Similarly, the expected error of M is the supremum, over distributions D and data analysts
A, of

E(errS(M,A)) .

We sometimes fix the distribution D and take the supremum only over analysts A.

The definition makes no assumptions on how the analyst selects queries, except that the selection is
based on the outputs of M and not directly on the data.

Phrased somewhat differently, we are interested in an unusual minimax problem, where the “max”
includes all possible analyst strategies. For the case of expected error, this corresponds to

inf
mechanisms

M

(
sup

distributions
D

sup
analysts

A

E
S∼D
i.i.d.

(errS(M,A))

)
.

Before trying to understand this general setting, though, let’s spend a bit more time on the simplest
strategy, in which all queries are specified ahead of time.

2 Answering Nonadaptive Statistical Queries

Last time, we discussed what happens when we try to estimate the expectation of a single statistical
query1 using a sample of size n drawn i.i.d from a distribution D.

Theorem 2 Let D be a distribution on the set X , and φ : X → [0, 1] be a statistical query with
expectation µ = ED[φ]. If S ∼ Dn is a sample of size n drawn i.i.d. from D, then, probability 1− δ over

the choice of S: |ES[φ]− µ| ≤
√

ln(2/δ)
2n .

If we want the empirical mean to be within α of the true expectation with probability 1−δ, a sample

of size ln(1/δ)
2α2 thus suffices—or O

(
1
α2

)
when δ is constant.

1Terminology: What computer scientists call statistical queries, statisticians call bounded linear functionals. A func-
tional in this context is a map from probability distributions to real numbers (in this case, φ maps D to ED[φ]). Linear
means that the functional’s value is its expectation on a single data point selected according to the distribution, and
bounded refers to the statistic taking values in [0, 1] (or any other bounded interval).

Adaptive Linear Queries
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Figure 1: Adaptively selected linear queries
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Most interesting analyses ask more than one question of the data. In the simplest setting, the
analyst has a set of questions in mind that were specified before the data were collected—what we will
call “nonadaptively”.

Suppose that an analyst specifies k statistical queries φ1, ..., φk ahead of time. How many samples
does it take to estimate the expectations of all of these simulatenously?

Theorem 3 (Nonadaptive statistical queries) Let D be a distribution on the set X , and φ1, ..., φk :
X → [0, 1] be statistical queries with expectations µj = ED[φj ]. If S ∼ Dn is a sample of size n drawn

i.i.d. from D, then, probability 1− δ over the choice of S: maxj=1,...,k |ES[φj ]− µj | ≤
√

ln(2k/δ)
2n .

Proof Recall the union bound: for every set of k events E1, ..., Ek in the same probability space, the
probability of their union is at most the sum of their probabilities:

Pr

 ⋃
j=1,...,k

Ej

 ≤ k∑
j=1

Pr(Ej) .

By Theorem 2, it is unlikely that the expectation of any particular query will be way off:

∀i ∈ {1, ..., k} : Pr

(
|ES[φj ]− µj | >

√
ln(2k/δ)

2n

)
≤ δ

k
.

So the probability that any one of the empirical means of the k of the queries will be far from their
true expectations is at most δ:

Pr

(
∀i ∈ {1, ..., k} : |ES[φj ]− µj | >

√
ln(2k/δ)

2n

)
≤ δ .

Considering the complementary event yields the theorem statement.

Exercise 1 If we want the empirical mean of all k queries to be within α of the true expectation with
probability 2/3, what sample size suffices asymptotically?

Exercise 2 Prove that E (maxj=1,...,k |φj(S)− µj |) = O(
√

ln(2k)
2n ).

Suppose that we are only interested in finding out the smallest of the expectations of the φj . That
is, we wish to estimate µmin = minj=1,...,kmuj . Alternatively, we may wish to obtain an approximate
minimizer—that is, to find an index ı̂ such that ES[φı̂]− µmin is as small as possible. In such settings,
the bound of the Theorem 3 applies up to an additional factor of 2 (why?): With probability at least
1− δ, we have

|ES[φı̂]− µmin| ≤ 2

√
ln(2k/δ)

2n
where ı̂ = arg min

j
ES[φj ] . (1)

Exercise 3 Show that the bound of Equation (1) is tight in general. That is, there exists a distribution

and a collection of statistical queries such that the probabilities in (1) are Ω

(√
ln(k/δ)
n

)
for large n, k

and small δ.

3 Uniform Convergence and Optimization

Theorem 3 is probably the simplest example of uniform convergence of random variables, where we ask
for the probability that a whole set of random variables are simultaneously close to their expectations.

There are thousands of beautiful results on concentration, many of which rely on something like
Theorem 3 at their core. We will see one or two more examples this lecture.
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3.1 Stochastic Optimization

A lot of statistical problems involve finding “likely” parameters of some probability model, given a set of
observed data. For example, in the classic “ordinary least squares” linear regression problem, every data
point is a pair (x, y) in Rd × R, where the entries of x are called the features or independent variables,
and y is the response. A common task is to look for a linear relationship between x and y by looking
for a vector w ∈ Rd that minimizes the mean squared error

`OLS(w;S) =
1

n

∑
(xi,yi)∈S

(
yi − wTxi

)2
.

This corresponds to computing the maximum likelihood estimator for a model in which there is a hidden
vector w∗ such that each yi is generated as wTxi+Zi and the Z ′i are i.i.d. N(0, σ2) for some fixed σ > 0.

If we consider the expected value of `OLS(w;S) over the choice of S, we get the population error

L(w;D) = E(X,Y )∼D
(
Y − wTX

)2
. This achieves its minimum value, σ2, at w∗ if D really follows the

model.
More generally, we imagine a parameter space w—typically a subset of Rd for finite d—in which every

parameter vector w and data point x are associated with a loss `(w;x) describing how “well” w matches
x. Given a data set S = (x1, ..., xn) drawn i.i.d. from a distribution D, we have two key quantities:

Emprical loss: `(w;S)
def
=

1

n

n∑
i=1

`(w;xi) , (2)

Population loss: L(w;D)
def
= ES∼D⊗n [`(w;S)] = Ex∼D[`(w;x)] . (3)

Our goal is generally to approximate the population minimizer

w∗
def
= arg min

w∈w
L(w;D) .

We’ll measure how well we do with a given estimate ŵ by the excess risk

errD(ŵ) = L(ŵ;D)− min
w∈w

L(w;D) .

A commonly used estimator is the empirical minimizer

ŵerm
def
= arg min `(w;S) .

This setup captures a class of statistical estimators called M-estimators. For least-squares regression,
w denotes the regression coefficents and ` denotes the mean squared error; for classification based on
a deep neural network, w might be the weights in the neural network and `, the probability of correct
classification

Exercise 4 Suppose X = w = R and `(w;x) = |w − x|. What well-known function of S is given by the
empirical minimizer ŵemd? In terms of the distribution D, what is w∗?

How well does the empirical minimizer do at minimizing the population error? In general, in this
setup, it can be arbitrarily horrible. However, under mild assumptions, it can be shown to perform very
well! In some settings it can also be modified to perform even better via “regularization”—we’ll get to
that later in the class.

Assumption 4 (Lipschitz loss on a bounded parameter space) We assume that: (a) Θ ∈ Rd is
contained in a ball of radius R (that is, ‖w‖ ≤ R for all w ∈ Θ, where ‖ · ‖ denotes the usual Euclidean
norm). (b) the loss doesn’t jump around too quickly as w changes. More specifically, ` is C-Lipschitz:
for all u, v ∈ Θ and all x ∈ X , we have |L(u;x)− L(v;x)| ≤ C‖u− v‖. When `(·;x) has a gradient, this
is the same as assuming that its gradient has norm at most C everywhere in θ.
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Theorem 5 (Uniform convergence) Under Assumption 4, if S is drawn i.i.d. from D, then for all

suficiently large n, with probability at least 1− δ over S, supw∈Θ |`(w;S)− L(w;D)| ≤ 6RC
√

d log(n/δ)
n .

Corollary 6 Under Assumption 4, if S is drawn i.i.d. from D, then err(werm) ≤ 6RC
√

d log(n/δ)
n with

probability at least 1− δ over S.

We will prove this using a “net argument”.

Definition 7 (Cover) Given a set Θ ⊆ Rd, a subset N ⊆ Θ is an α-cover (or α-net) of Θ if, for every
u ∈ Θ, there is a point v ∈ N within distance at most α of u.

Lemma 8 For every set Θ ∈ Rd contained in a ball of radius R, for every α > 0, there is an α-cover of
size at most (

1 +
2R

α

)d
.

Proof [of Lemma 8] First, note that we can take R = 1 without loss of generality, since an α
R -cover of

1
R ·Θ can be scaled up to an α-cover of Θ.

We’ll proceed via a standard volume argument. Fix α > 0 and choose Nα to be a maximal α-
separated subset of Θ. In other words, Nα is such that ‖u − v‖ ≥ α for all u, v,∈ Nα, u 6= v, and no
subset of Θ containing Nα has this property.

The maximality property implies that Nα is an α-cover of Θ. Indeed, otherwise there would exist
u ∈ Θ that is at least α-far from all points in Nα. So Nα{x} would still be an α-separated set,
contradicting the minimality property.

This is where the volume argument comes in. First, the separation property implies that the balls
of radii α/2 centered at the points in Nα are disjoint, so the volume of their union is the some of their
volumes. On the other hand, all such balls lie in (1 + α/2)B where B denotes the unit Euclidean ball
centered at the origin. Comparing volumes gives

vol
(α

2
B
)
· |Nα|︸ ︷︷ ︸

vol. of union of α/2-balls around Nα

≤ vol
(

(1 +
α

2
)B
)
.

Since vol(rB) = rdvol(B) for all r ≥ 0, we conclude that |Nα| ≤ (1 + α
2 )d/(α2 )d = (1 + 2

α )d as required.

Proof [of Theorem 5] Consider a net Nα = {w1, ..., wK} of Θ as in the previous lemma, and let
K ≤ (1 + 2R/α)d be its size. We will set α later.

We will assume for simplicity that, for each x ∈ X , the minimum value of `(·;x) on Θ is 0 (we can
enforce this condition by adding or subtracting a function of x to `; this will not affect minimization).
In particular, this means that ` will take only values in [0, 2CR] since ` is C-Lipschitz in w, and Θ has
diameter at most 2R.

For each point wj ∈ Nα, we can think of `(w; ·) as decribing a statistical query (that takes values
in [0, 2CR] instead of [0, 1]) with expected value L(w;D). Applying an appropriately scaled version of
Theorem 3, we get that with probability 1− δ,

max
w∈Nα

|`(w;S)− L(w;D)| ≤ 4CR

√
ln(2K/δ)

2n
.

This statement takes care of the cover. To extend the statement to every point in Θ, first observe that
the average of Lipschitz functions is itself Lipschitz; thus, `(·;S) and L(·,D) are Lipschitz. Now for any
w ∈ Θ, we can find a cover point wj within distance at most α of w. By the triangle inequality,

|`(w;S)− L(w;D)| ≤ |`(w;S)− `(w̃;S)|+ |`(w̃;S)− L(w̃;D)|+ |L(w̃;D)− L(w;D)| (4)

≤ Cα+ 2CR

√
ln(2K/δ)

2n
+ Cα (5)

≤ 2Cα+ 4CR

√
d ln(1 + 2R/α) + ln(2/δ)

2n
(6)
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where the last inequality comes from the bound on K. Setting α = R/n yields the desired bound for
sufficiently large n (recalling that CR/n is always smaller than CR/

√
n, and that 4/

√
2 < 3).

Exercise 5 Prove Corollary 6.

Where does this leave us? If we can find the empirical minimum werm efficiently, then—assumging
n � d—we are guaranteed to get a value which is approximately optimal for the distribution. How
difficult the empirical optimization problem is varies enormously from context to context, but one large
and important class of problems have loss functions that are convex. The structure of convex functions
make them amenable to greedy optimization methods, such as gradient descent.

3.2 Net arguments in general

The basic outline of the previous proof is very common in probability theory: to prove that a family
of ranodm variables covnerges uniformly to their expectation, we first find a subset that is somehow
“representative”—inasmuch as every random variable is close to one of the representative ones. We then
show by a union bound that the representative random variables converge simultaneously at some rate,
and conclude convergence for the entire family.

There are lots of settings where such simple strategies are not enough, however, and many concepts
have been developed to understand uniform convergence; Vapnik-Chernovenkis (VC) dimension is a
famous example. We may return to these later in the class.

4 Convex Optimization

What good are statistical queries? As mentioned above, many learning algorithms can be expressed as a
sequence of statistical queries. A fine example of this was just mentioned above—the problem of finding
a minimizer for a convex function.

Recall that a set Θ ⊆ Rd is convex if for every x, y ∈ Θ, the line segment x̄y is contained in Θ. A
function Θ → R is convex if it is “curved upwards” everywhere. There are many equivalent definitions
of this. The simplest requires that, for all x, y ∈ Θ,

f

(
x+ y

2

)
≤ f(x) + f(y)

2
.

It is often easier to work with the following equivalent definition: a function f is convex of Θ if for
every x ∈ Θ, there exists a vector g ∈ Rd, called a subgradient for f at x, such that the linear function
f̂(y) = f(x) + 〈g, y − x〉 is a lower bound for f on Θ (that is, f(y) ≥ f̂(y) for all y ∈ Θ). There can be
many subgradients at a given point; the set of all subgradients is denoted ∂f(x). When the subgradient
is unique, it coincides with the usual gradient ∇f(x).

Convex functions have the feature that they have no local minima (Why?). As a consquence, simple
greedy strategies will actually find global optima. For example, we may consider projected gradient
descent, in which we start with an arbitrary value x0 ∈ Θ, and derive estimates xt for t = 1, 2, ... using

yt+1 = xt − ηgt, where gt ∈ ∂f(xt)

xt+1 = ΠΘ(yt)

where the ΠΘ operator is the projection onto Π, i.e. ΠΘ(y) = arg minx∈Θ ‖x− y‖.

Lemma 9 Let Θ be closed and convex. Then

1. For every y ∈ Rd, the projection ΠΘ(y) is unique.

2. For every x ∈ Θ and y ∈ Rd,
〈ΠΘ(y)− x, ΠΘ(y)− y〉 ≤ 0 .

In particular, ‖ΠΘ(y)−x‖ ≤ ‖y−x‖ (that is, projection decreases the distance to all points in Θ).
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Theorem 10 Let Θ be contained in a ball of radius R and f be a C-Lipschitz convex function on Θ. If
we run T rounds of projected gradient descent with η = R

C
√
T

, then

f

 1

T

T∑
j=1

xt

− f(x∗) ≤ RC/
√
T , where x∗

def
= arg min

x∈Θ
f(x) .

Proof We will consider the distance f(xt) − f(x∗). Since f is convex, we can bound this distance
using the linear approximation to f at xt:

f(xt)− f(x∗) ≤ 〈gt, xt − x∗〉 .

By construction, the subgradient gt is exactly the difference 1
η (yt+1 − xt). Using the identity 2〈u, v〉 =

‖u‖2 − ‖v‖2 − ‖u− v‖2, we get:

f(xt)− f(x∗) ≤ 1

η
〈yt+1 − xt, xt − x∗〉

=
1

η

(
‖yt+1 − xt‖2 + ‖xt − x∗‖2 − ‖yt+1 − x∗‖2

)
=

1

η

(
‖xt − x∗‖2 − ‖yt+1 − x∗‖2

)
+ η‖gt‖2 .

Recall that projection only decreases distances, so ‖yt+1 − x∗‖2 ≥ ‖xt+1 − x∗‖2 and

f(xt)− f(x∗) ≤ 1

η

(
‖xt − x∗‖2 − ‖xt+1 − x∗‖2

)
+ ηC2 . (7)

Finally, we see that the quantity we are trying to bound for the theorem is the average of the left-hand
side of (7) (over t from 0 to T − 1). Moreover, the right-hand side telescopes!

f

 1

T

T∑
j=1

xt

− f(x∗) ≤ 1

η

(
‖x0 − x∗‖2 − ‖xT − x∗‖2

)
+ ηTC2 ≤ R2

Tη
+ ηC2 .

Setting η = R
C
√
T

proves the theorem.

4.1 Optimizing the Population Loss

We can use Theorem 10 together with our uniform convergence statement (Theorem 5) to get a nice
statistical query algorithm: use gradient descent to optimizie the empirical mean, and then conclude
that the resulting optimum is pretty close to perfect via uniform convergence.

This is a statistical query algorithm because each coordinate of each of the queries to the empirical
loss’s gradient is in fact a statistical query (with values in [−C,C] instead of [0, 1]). Moreover, this
algorithm is really adaptive: the query point of gradient descent depends on the gradients of previous
rounds. However, our analysis takes advantage of the fact that there are only so many places the
algorithm can wander.

As the course progresses, we’ll see (a) a better analysis of this type of gradient descent that allows
us to get much tighter bounds on the excess loss, and (b) that not all adaptive strategies for asking
statistical queries are so benign.

Notes

The proof of Lemma 8 comes from http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.

pdf

Our analysis of gradient descent follows Section 3.1 of https://arxiv.org/pdf/1405.4980.pdf,
which follows the book of Nesterov.
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